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Problem 1 Vector Operators

1. Consider a classical vectorial quantity V = (V, V,,, V). Show that under a rotation
by a small angle ¢ around a unit vector u, the components of V transform as
Vo, =V, + wEQ/gVUgVy.

2. We want to find the quantum mechanical analogue of this transformation. Con-
sider a state |p) in a Hilbert space, and a vectorial operator V. = (V,,V,,V.).

~

Show that the expectation value (V) transforms as
(Va) = (Vo) + iug([Lg, Va]) (1)
under such a rotation, where L is the angular momentum operator.
3. Deduce the commutator [Lq, V3],

Solution to Problem 1:

1. Onme can derive this formula from a variety of points of view. An explicit expres-
sion for the rotation of a three-dimensional vector is given by Rodrigues’ rotation
formula, which states that V is transformed to

V = (cos )V + (siny))(u x V) 4+ (1 — cos¢)u(u- V). (2)
Expanding at first order in 1 one gets
V> V+yuxV), (3)

which gives the result.

2. Rotations in the Hilbert space are realized by the unitary operator
U =exp(—ipu-L)=1—ipu-L+o(y)), (4)

which means that the state |¢) is mapped to U]p). The expectation value of V
in this state then transforms as

(V) = (¢lVIp) = (£lUTVU]p). (5)
At first order in v the right hand side is

(plUTVUp) = (p|(1+iu-L)V(1—ivuL)|p) = (o|V|e)+{pliv[uL, V]e). (6)

3. Identifying the two results, one find

A ~ ~

[Las Vs] = i€ap, Vs . (7)

Problem 2 Tensor product decomposition

You saw that for each [ there exist an (a priori complex) irreducible representation & of
SU(2) of dimension 2[ + 1, spanned by vectors |l,m), m € {—I, =1+ 1,...,0 — 1,1}. Tt is
usually called spin-I-representation. We can identify & = C#+1L
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1. Using Clebsch-Gordan theory, decompose £; ® & and &,/ ® £,/ into irreducible
representations of SU(2).

2. We would like to understand how this decomposition exactly works. Consider the
defining (3-dim.) representation of SO(3) on &, p(R)v = Rv where R € SO(3)
and v € R3 (in odd dimensions, the (a priori complex) spin-k representations
can be made real). Think of the space £ ® & as 3 x 3 matrices that can be
decomposed into symmetric and anti-symmetric subspaces. Show that the tensor
product representation of the defining representation of SO(3), p® p, leaves them
invariant and identify the remaining 1-dim. subspace that can be extracted from
the symmetric subspace, such that all subspaces are irreducible under SOs.

3. Consider the defining (2-dim.) representation of SU(2) on &/, and decompose
&1/2 ® &1 2 into irreducible subspaces as above.

Solution to Problem 2:

1. Using the general formula for the decomposition of tensor products of spin-/ rep-
resentations of SU(2), &, ® &, = @f:ﬁlf_m &, wefind, £, @& =E B E B & and
81/2 ® 51/2 — g() S 81.

2. The space & ® & = R® @ R? is isomorphic to Mat(3,R) by the identification
v ®w — vw! where v,w € R3. On this space, the tensor product representation
p? = p® p of SO(3) acts as p*(R)A = RART, A € Mat(3,R), R € SO(3).
Let A = AT be an (anti-)symmetric matrix in Mat(3,R), then it is easy to see
that p?(R)A is also (anti-)symmetric. The symmetric subspace is 6-dimensional
and the antisymmetric subspace is 3-dimensional. Comparing with the former
question, we therefore know that there must be a further invariant subspace of
dimension 1, hidden in the space of symmetric matrices. This is the trace of A.
Let tr(A) = 0 and A symmetric. Then also tr(p?(R)A) = tr(RART) = tr(4) =0
since RTR = I35. To sum up, any real 3z3 matrix A decomposes as

A= %(A + AT — %tr(A)) + %(A — AT + %tr(A)Hg (8)

3. We do an analogue identification of &, ® &, = C* ® C* with Mat(2,C) by
v®@w — vw? where v,w € C2. Note that v ®@w — vw' does not conserve linearity
of the tensor product and therefore does not provide an isomorphism to complex
222 matrices. As above, the tensor product representation acts as p*(U)A =
UAUT, U € SU(2), A € Mat(2,C) and the decomposition into symmetric and
antisymmetric subspaces works analogously. But notice that we can no longer
subtract the trace, since tr(p?(U)A) = tr(UAUT) # tr(A).

Problem 3 Magnetic moment and gyromagnetic factor

Consider a quantum system S described by a Hilbert space H. We call L its total
angular momentum (including spin). In the presence of a magnetic field B, we write its
Hamiltonian as H(B). For small fields, we expand H as

~

H(B)=Hy— Y M,Bo+... (9)
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where, by definition, Hy = H(0) and M, = —dp, H(B = 0).

1. Assumlng that the total system (system and field) is rotationally symmetric, show
that Hy and M are respectively scalar (rank 0) and vector (rank 1) tensor. A
rank £ tensor is an is an element of the vector space of operators on Hilbert space
that transforms in a spin-k representation of su(2) or SU(2). Hint: Consider the
effect of infinitesimal rotations on B and H.

2. We consider first the case of a zero external magnetic field. Let us decompose the
system Hilbert space into eigenstates of the angular momentum operator L, as
In, £,me) = |n) @ |€,my), where |I,m;) forms for each [ an irreducible su(2) rep-
resentation. Here n labels additional degrees of freedom, that are not touched by
rotations, and it is chosen such that Hy is diagonal when acting of |n). Show that
the eigenstates of H, are also of the form In, £,my). Using Winger Eckart’s theo-
rem, show that the corresponding energies are of the form £, 4, i.e. independent
of m;y.

3. We now consider the case of a weak (albeit finite) magnetic field. Using the Wigner
Eckart theorem, show that, at first order in perturbation, the energy spectrum can
be interpreted by endowing the system with a magnetic moment M, = ~,,L.

Solution to Problem 3:
Rotational symmetry of the full system tells us that a rotation of the full Hamiltonian
should have no impact, if we also rotate the magnetic field accordingly.

We describe rotations of the Hamiltonian by Hy = Ul (9)HU, () (this can be interpreted
as a Heisenberg picture description of the change of our coordinate system or an inverse
rotation of H). The unitary operator Un () is generated by the angular momentum
operator L and for small 6 we expand as

3
Un(0) =1—i0 n;L; + O(6?), (10)
j=1
where n = (ny,n9,n3)7 is the rotation axis and 6 the angle. On the other hand, rotations
of the magnetic field vector B € R3 are described by

Rn(0)B = B +6n x B+ O(6?). (11)

Symmetry now requires that

A A ~

U (0)H (R (6)B)Un(6) = H(B). (12)

1. Let us first consider the case B = 0 with H(0) = H,. We obtain

3
UL (0)HoUn(0) = Hy + 10> ny[L;, Ho| + O(67). (13)

J=1

Symmetry requires the right-hand side to be equal to H, for arbitrary n. So all
nonzero orders in # must vanish, leading to the condition

A A

(L, H] =0, j=1,23 (14)
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Hence, H, is a scalar operator.

For the case B # 0, we only have to consider the part M - B since we already
know that Hj is a scalar operator. We obtain after the rotation

~

UL(6) | M - (Rn(H)B)] Un(6) = UL()MUn(6) - (Ra(0)B) (15)

=1

_ (M—I—i@Zni[ﬁi,M]) (B +6n x B) + 0(6?).

Written out in components we obtain

3 3 3
Z (MJ + 10 Z nZ[L“ M]]> <BJ + 0 Z Equanq> + 0(02)
j=1 i=1 pg=1
3 3 o 3 K
> M;B;+i6 Y nilLi, Mj|B; + 6 > epijniBiMy + O(6%).  (16)

j=1 ij=1 i k=1

Since the first term is the Hamiltonian before the rotation the terms proportional to
6 must cancel to zero for arbitrary choices of the n; and B;, yielding the condition

3

k=1
or, equivalently,

3

k=1

Hence, M is a vector operator.

. The existence of this eigenbasis follows directly from the fact that H, commutes
with L. We can use the additional quantum number n to lift degeneracies of the
subspaces of L. The Wigner-Eckart theorem tells us that the eigenvalues will not
depend on m;: We have seen that Ho, in the absence of a magnetic field, is a scalar
operator (k= ¢ = 0). The Wigner-Eckart theorem states that

n',l, m§|ﬁ0|n, L) = apr (U, my]0, 051, my), (19)

where the Clebsch-Gordan coefficients (I, m}|0,0;1,m;) are zero unless I’ = [ and
my = m;. By picking n as the quantum number that labels energy eigenstates, H,
becomes diagonal in the basis |n,{,m;). The proportionality factors o will only
depend on n and [ (but not on m;) and correspond to the diagonal elements, i.e.,
the eigenenergies.

. We know that vector operators are, in each subspace |n,l), proportional to the
angular momentum operator and we can write

. ML), -
wr = M Lini g (20)
<L2>n,l



