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Problem 1 Vector Operators

1. Consider a classical vectorial quantity V = (Vx, Vy, Vz). Show that under a rotation
by a small angle ψ around a unit vector u, the components of V transform as
Vα → Vα + ψεαβγuβVγ.

2. We want to find the quantum mechanical analogue of this transformation. Con-
sider a state |ϕ〉 in a Hilbert space, and a vectorial operator V̂ = (V̂x, V̂y, V̂z).

Show that the expectation value 〈V̂α〉 transforms as

〈V̂α〉 → 〈V̂α〉+ iψuβ〈[L̂β, V̂α]〉 (1)

under such a rotation, where L̂ is the angular momentum operator.

3. Deduce the commutator [L̂α, V̂β].

Solution to Problem 1 :

1. One can derive this formula from a variety of points of view. An explicit expres-
sion for the rotation of a three-dimensional vector is given by Rodrigues’ rotation
formula, which states that V is transformed to

V→ (cosψ)V + (sinψ)(u×V) + (1− cosψ)u(u ·V) . (2)

Expanding at first order in ψ one gets

V→ V + ψ(u×V) , (3)

which gives the result.

2. Rotations in the Hilbert space are realized by the unitary operator

Û = exp(−iψu · L̂) = 1− iψu · L̂ + o(ψ) , (4)

which means that the state |ϕ〉 is mapped to Û |ϕ〉. The expectation value of V
in this state then transforms as

〈V̂〉 = 〈ϕ|V̂|ϕ〉 → 〈ϕ|Û †V̂Û |ϕ〉 . (5)

At first order in ψ the right hand side is

〈ϕ|Û †V̂Û |ϕ〉 = 〈ϕ|(1+iψu·L̂)V̂(1−iψu·L̂)|ϕ〉 = 〈ϕ|V̂|ϕ〉+〈ϕ|iψ[u·L̂, V̂]|ϕ〉 . (6)

3. Identifying the two results, one find

[L̂α, V̂β] = iεαβγV̂γ . (7)

Problem 2 Tensor product decomposition

You saw that for each l there exist an (a priori complex) irreducible representation El of
SU(2) of dimension 2l + 1, spanned by vectors |l,m〉, m ∈ {−l,−l + 1, ..., l − 1, l}. It is
usually called spin-l-representation. We can identify El ∼= C2l+1.
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1. Using Clebsch-Gordan theory, decompose E1 ⊗ E1 and E1/2 ⊗ E1/2 into irreducible
representations of SU(2).

2. We would like to understand how this decomposition exactly works. Consider the
defining (3-dim.) representation of SO(3) on E1, ρ(R)v = Rv where R ∈ SO(3)
and v ∈ R3 (in odd dimensions, the (a priori complex) spin-k representations
can be made real). Think of the space E1 ⊗ E1 as 3 × 3 matrices that can be
decomposed into symmetric and anti-symmetric subspaces. Show that the tensor
product representation of the defining representation of SO(3), ρ⊗ ρ, leaves them
invariant and identify the remaining 1-dim. subspace that can be extracted from
the symmetric subspace, such that all subspaces are irreducible under SO3.

3. Consider the defining (2-dim.) representation of SU(2) on E1/2 and decompose
E1/2 ⊗ E1/2 into irreducible subspaces as above.

Solution to Problem 2 :

1. Using the general formula for the decomposition of tensor products of spin-l rep-
resentations of SU(2), El1 ⊗El2 =

⊕l1+l2
l=|l1−l2| El, we find, E1⊗E1 = E0⊕E1⊕E2 and

E1/2 ⊗ E1/2 = E0 ⊕ E1.

2. The space E1 ⊗ E1 = R3 ⊗ R3 is isomorphic to Mat(3,R) by the identification
v ⊗ w → vwT where v, w ∈ R3. On this space, the tensor product representation
ρ2 := ρ⊗ ρ of SO(3) acts as ρ2(R)A = RART , A ∈ Mat(3,R), R ∈ SO(3).

Let A = AT be an (anti-)symmetric matrix in Mat(3,R), then it is easy to see
that ρ2(R)A is also (anti-)symmetric. The symmetric subspace is 6-dimensional
and the antisymmetric subspace is 3-dimensional. Comparing with the former
question, we therefore know that there must be a further invariant subspace of
dimension 1, hidden in the space of symmetric matrices. This is the trace of A.
Let tr(A) = 0 and A symmetric. Then also tr(ρ2(R)A) = tr(RART ) = tr(A) = 0
since RTR = I3. To sum up, any real 3x3 matrix A decomposes as

A =
1

2
(A+ AT − 1

3
tr(A)) +

1

2
(A− AT ) +

1

6
tr(A)I3 (8)

3. We do an analogue identification of E1/2 ⊗ E1/2 = C2 ⊗ C2 with Mat(2,C) by
v⊗w → vwT where v, w ∈ C2. Note that v⊗w → vw† does not conserve linearity
of the tensor product and therefore does not provide an isomorphism to complex
2x2 matrices. As above, the tensor product representation acts as ρ2(U)A =
UAUT , U ∈ SU(2), A ∈ Mat(2,C) and the decomposition into symmetric and
antisymmetric subspaces works analogously. But notice that we can no longer
subtract the trace, since tr(ρ2(U)A) = tr(UAUT ) 6= tr(A).

Problem 3 Magnetic moment and gyromagnetic factor

Consider a quantum system S described by a Hilbert space H. We call L̂ its total
angular momentum (including spin). In the presence of a magnetic field B, we write its
Hamiltonian as Ĥ(B). For small fields, we expand Ĥ as

Ĥ(B) = Ĥ0 −
∑
α

M̂αBα + . . . (9)
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where, by definition, Ĥ0 = Ĥ(0) and M̂α = −∂BαH(B = 0).

1. Assuming that the total system (system and field) is rotationally symmetric, show
that Ĥ0 and M̂ are respectively scalar (rank 0) and vector (rank 1) tensor. A
rank k tensor is an is an element of the vector space of operators on Hilbert space
that transforms in a spin-k representation of su(2) or SU(2). Hint: Consider the
effect of infinitesimal rotations on B and Ĥ.

2. We consider first the case of a zero external magnetic field. Let us decompose the
system Hilbert space into eigenstates of the angular momentum operator L̂z as
|n, `,m`〉 = |n〉 ⊗ |`,m`〉, where |l,ml〉 forms for each l an irreducible su(2) rep-
resentation. Here n labels additional degrees of freedom, that are not touched by
rotations, and it is chosen such that Ĥ0 is diagonal when acting of |n〉. Show that
the eigenstates of Ĥ0 are also of the form |n, `,m`〉. Using Winger Eckart’s theo-
rem, show that the corresponding energies are of the form En,`, i.e. independent
of ml.

3. We now consider the case of a weak (albeit finite) magnetic field. Using the Wigner
Eckart theorem, show that, at first order in perturbation, the energy spectrum can
be interpreted by endowing the system with a magnetic moment M̂n` = γn`L̂.

Solution to Problem 3 :

Rotational symmetry of the full system tells us that a rotation of the full Hamiltonian
should have no impact, if we also rotate the magnetic field accordingly.

We describe rotations of the Hamiltonian by Ĥθ = Û †n(θ)ĤÛn(θ) (this can be interpreted
as a Heisenberg picture description of the change of our coordinate system or an inverse
rotation of Ĥ). The unitary operator Ûn(θ) is generated by the angular momentum
operator L̂ and for small θ we expand as

Ûn(θ) = Î− iθ
3∑
j=1

njL̂j +O(θ2), (10)

where n = (n1, n2, n3)
T is the rotation axis and θ the angle. On the other hand, rotations

of the magnetic field vector B ∈ R3 are described by

Rn(θ)B = B + θn×B +O(θ2). (11)

Symmetry now requires that

Û †n(θ)Ĥ(Rn(θ)B)Ûn(θ) = Ĥ(B). (12)

1. Let us first consider the case B = 0 with Ĥ(0) = Ĥ0. We obtain

Û †n(θ)Ĥ0Ûn(θ) = Ĥ0 + iθ

3∑
j=1

nj[L̂j, Ĥ0] +O(θ2). (13)

Symmetry requires the right-hand side to be equal to Ĥ0 for arbitrary n. So all
nonzero orders in θ must vanish, leading to the condition

[L̂j, Ĥ0] = 0, j = 1, 2, 3. (14)
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Hence, Ĥ0 is a scalar operator.

For the case B 6= 0, we only have to consider the part M̂ ·B since we already
know that Ĥ0 is a scalar operator. We obtain after the rotation

Û †n(θ)
[
M̂ · (Rn(θ)B)

]
Ûn(θ) = Û †n(θ)M̂ Ûn(θ) · (Rn(θ)B) (15)

=

(
M̂ + iθ

3∑
i=1

ni[L̂i,M̂ ]

)
· (B + θn×B) +O(θ2).

Written out in components we obtain

3∑
j=1

(
M̂j + iθ

3∑
i=1

ni[L̂i, M̂j]

)(
Bj + θ

3∑
pq=1

εjpqnpBq

)
+O(θ2)

=
3∑
j=1

M̂jBj + iθ
3∑

i,j=1

ni[L̂i, M̂j]Bj + θ

3∑
i,j,k=1

εkijniBjM̂k +O(θ2). (16)

Since the first term is the Hamiltonian before the rotation the terms proportional to
θ must cancel to zero for arbitrary choices of the nj and Bi, yielding the condition

i[L̂i, M̂j] = −
3∑

k=1

εijkM̂k, (17)

or, equivalently,

[L̂i, M̂j] = i
3∑

k=1

εijkM̂k. (18)

Hence, M̂ is a vector operator.

2. The existence of this eigenbasis follows directly from the fact that Ĥ0 commutes
with L̂. We can use the additional quantum number n to lift degeneracies of the
subspaces of L̂. The Wigner-Eckart theorem tells us that the eigenvalues will not
depend on ml: We have seen that Ĥ0, in the absence of a magnetic field, is a scalar
operator (k = q = 0). The Wigner-Eckart theorem states that

〈n′, l′,m′l|Ĥ0|n, l,ml〉 = αn′,n,l′,l〈l′,m′l|0, 0; l,ml〉, (19)

where the Clebsch-Gordan coefficients 〈l′,m′l|0, 0; l,ml〉 are zero unless l′ = l and
ml = m′l. By picking n as the quantum number that labels energy eigenstates, Ĥ0

becomes diagonal in the basis |n, l,ml〉. The proportionality factors α will only
depend on n and l (but not on ml) and correspond to the diagonal elements, i.e.,
the eigenenergies.

3. We know that vector operators are, in each subspace |n, l〉, proportional to the
angular momentum operator and we can write

M̂ =
〈M̂ · L̂〉n,l
〈L̂2〉n,l

L̂. (20)

4


