Problem 1 Tensor product decomposition

You saw that for each l there exist an (a priori complex) irreducible representation \mathcal{E}_l of SU(2) of dimension 2l + 1, spanned by vectors $|l, m\rangle$, $m \in \{-l, -l + 1, ..., l - 1, l\}$. It is usually called spin-l-representation. We can identify $\mathcal{E}_l \cong \mathbb{C}^{2l+1}$.

- 1. Using Clebsch-Gordan theory, decompose $\mathcal{E}_1 \otimes \mathcal{E}_1$ and $\mathcal{E}_{1/2} \otimes \mathcal{E}_{1/2}$ into irreducible representations of SU(2).
- 2. We would like to understand how this decomposition exactly works. Consider the defining (3-dim.) representation of SO(3) on \mathcal{E}_1 , $\rho(R)v = Rv$ where $R \in SO(3)$ and $v \in \mathbb{R}^3$ (in odd dimensions, the (a priori complex) spin-k representations can be made real). Think of the space $\mathcal{E}_1 \otimes \mathcal{E}_1$ as 3×3 matrices that can be decomposed into symmetric and anti-symmetric subspaces. Show that the tensor product representation of the defining representation of SO(3), $\rho \otimes \rho$, leaves them invariant and identify the remaining 1-dim. subspace that can be extracted from the symmetric subspace, such that all subspaces are irreducible under SO_3 .
- 3. Consider the defining (2-dim.) representation of SU(2) on $\mathcal{E}_{1/2}$ and decompose $\mathcal{E}_{1/2} \otimes \mathcal{E}_{1/2}$ into irreducible subspaces as above.

Problem 2 Magnetic moment and gyromagnetic factor

Consider a quantum system S described by a Hilbert space \mathcal{H} . We call \hat{L} its total angular momentum (including spin). In the presence of a magnetic field B, we write its Hamiltonian as $\hat{H}(B)$. For small fields, we expand \hat{H} as

$$\hat{H}(\boldsymbol{B}) = \hat{H}_0 - \sum_{\alpha} \hat{M}_{\alpha} B_{\alpha} + \dots$$
(2)

where, by definition, $\hat{H}_0 = \hat{H}(0)$ and $\hat{M}_{\alpha} = -\partial_{B_{\alpha}} H(\boldsymbol{B} = 0)$.

- 1. Assuming that the total system (system and field) is rotationally symmetric, show that \hat{H}_0 and \hat{M} are respectively scalar (rank 0) and vector (rank 1) tensor. A rank k tensor is an is an element of the vector space of operators on Hilbert space that transforms in a spin-k representation of $\mathfrak{su}(2)$ or SU(2). Hint: Consider the effect of infinitesimal rotations on \boldsymbol{B} and \hat{H} .
- 2. We consider first the case of a zero external magnetic field. Let us decompose the system Hilbert space into eigenstates of the angular momentum operator \hat{L}_z as $|n, \ell, m_\ell\rangle = |n\rangle \otimes |\ell, m_\ell\rangle$, where $|l, m_l\rangle$ forms for each l an irreducible $\mathfrak{su}(2)$ representation. Here n labels additional degrees of freedom, that are not touched by rotations, and it is chosen such that \hat{H}_0 is diagonal when acting of $|n\rangle$. Show that the eigenstates of \hat{H}_0 are also of the form $|n, \ell, m_\ell\rangle$. Using Winger Eckart's theorem, show that the corresponding energies are of the form $E_{n,\ell}$, i.e. independent of m_l .
- 3. We now consider the case of a weak (albeit finite) magnetic field. Using the Wigner Eckart theorem, show that, at first order in perturbation, the energy spectrum can be interpreted by endowing the system with a magnetic moment $\hat{M}_{n\ell} = \gamma_{n\ell} \hat{L}$.