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Problem 1 Representations of Abelian Groups

1. Using Schur’s lemma, show that all irreducible representations of an Abelian group
are one-dimensional.

2. Find all irreducible representations of Z/nZ over C. Hint: Consider the action
of the cyclic group on the complex unit circle. Convince yourself that the com-
plex conjugate of any of the irreducible representations is a new valid irreducible
representation. This is true in general.

Solution to Problem 1 :

1. Let G be Abelian and (r, E) an irreducible representation of G. Then ∀g, g′ ∈ G,
r[g]◦r[g′] = r[g′]◦r[g]. Schur’s lemma says that if r[g]◦T = T ◦r[g] for all g ∈ G and
r and irreducible representation, then ∃λ ∈ C∗ such that T = λIdE . For a given
g ∈ G we take T = r[g] and find r[g] = λ(g)IdE . The representation r therefore
leaves every one-dimensional subspace of E invariant. Since it is irreducible, this
is only possible if E is one-dimensional itself.

2. Since Z/nZ is finite Abelian, all its irreducible representations must be one di-
mensional. According to

∑c
i=1 d

2
i = n with di = 1, we have c = n, so there must

be n different representations. The cyclic groups can be pictured as n equidistant
rotations on the unit circle, which are generated by r[g] = ei2π/n. From this, we
obtain r[gk] = r[g]k = ei2πk/n. Alternatively, we may represent each group element
in terms of larger steps (consisting of m elementary rotations), leading to

rm[gk] = ei2πmk/n, (1)

for m = 1, . . . , n. Let us now verify that the rm are all inequivalent irreducible
representations of Z/nZ. First we show that they are well defined: rm[gk+n] =
ei2πm(k+n)/n = ei2πmk/nei2πm = ei2πmk/n = rm[gk]. Furthermore, rm[gkgl] = rm[gk+l] =
ei2πm(k+l)/n = ei2πmk/nei2πml/n = rm[gk]rm[gl], so they are irreducible (since one
dimensional) representations. Since rm[g] = ei2πm/n is different for all m, the rep-
resentations are all inequivalent. This means that we have found all irreducible
representations. Note: Complex conjugation always provides a new, valid rep-
resentation. Here, however, the complex conjugated ones already correspond to
another representation with different m.

Problem 2 Representations

1. Representation on the dual space: Let r be representation of G on E . Show that
for a linear function f : E → C

[r∗[g]]f(v) = f
(
r[g]−1v

)
(2)

is a representation of f .

2. Show that irreducible representations r over a C-vector space E must have the
property that r[g] = λIdE with λ ∈ C for all g from the center Z(G) of the group
G.

3. Show that two one-dimensional irreducible representations are equivalent if and
only if they are the same.
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Solution to Problem 2 :

1. We have that r[g]r[g′] = r[gg′] = r[g′g] = r[g′]r[g] for all g′ ∈ Z(G) and g ∈ G.
Schur’s lemma says that if r[g]T = Tr[g] for all g ∈ G then T = λIdE , which
proves the statement.

2. Two one-dimensional irreducible representations r1, r2, with ri : G→ K are equiv-
alent if there exists an invertible intertwining operator T : K→ K, i.e., Tr1 = r2T
where T is linear. The only invertible linear operations are T (x) = λ · x where
λ ∈ K and λ 6= 0. In the definition of the intertwining operator, the scalar cancels
on both sides and we obtain r1 = r2.

Problem 3 Character table of O and S4

The goal of this exercise is to construct the character table of O and S4. We have seen
that the groups are isomorphic, so they have the same character table. Start out by
identifying the dimensions of the table and fill out elements as you proceed.

1. Fill in the characters of the trivial irreducible representation. What are the di-
mensions of the remaining irreducible representations?

2. Find a representation that describes the permutation of the standard basis in C4.
Take the determinant of each matrix and show that it provides an irreducible
representation. What is the interpretation of this representation?

3. Calculate the characters of the 4D representation. Identify the invariant 1D and
3D subspaces. What is the representation in the 1D invariant subspace? Use
this to derive the characters of an irreducible 3D representation rstd, called the
standard representation.

4. We can construct a new representation by using the tensor product of two represen-
tations. Find the characters of the tensor products of all irreducible representations
that you found so far. Are they irreducible?

5. Complete the character table using Schur orthogonality.

6. Decompose rstd ⊗ rstd into irreducible representations of S4.

Solution to Problem 3 :

We have seen that there are five conjugacy classes, so the character table will be 5× 5.

1. The trivial representation has 1 in all classes (fill in first row). The group has
order 24. Labeling with d = (d5, d4, d3, d2, 1) the dimensions of the 5 irreps with
d5 ≥ d4 ≥ d3 ≥ d2 ≥ 1, we have 24 = d25 + d24 + d23 + d22 + 1. Evidently, d5 ≤ 4. Let
us assume d5 = 4. Since 42 + 32 + · · · = 16 + 9 + · · · > 25, we have d4 ≤ 2. For
d = (4, 2, 2, 1, 1) we obtain 26 (too much) but for d = (4, 2, 1, 1, 1) we have 23 (not
enough), so there is no solution with d5 = 4. Taking d5 = 3, we cannot have more
than two irreps of dimension 3 since 3 ∗ 32 = 27 > 24. For d = (3, 3, 2, 1, 1) we get
24, which is the unique solution. We fill that in the column for the identity.

2. We take the standard basis {e1, . . . , e4} in C4. The representations of the elements
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in each class are written as

r[e] =


1

1
1

1

 , r[(12)] =


0 1
1 0

1
1

 , r[(12)(34)] =


0 1
1 0

0 1
1 0

 ,

r[(123)] =


0 0 1
1 0 0
0 1 0

1

 , r[(1234)] =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

(3)

The determinants of block diagonal matrices can be determined using

det

(
A 0
0 B

)
= (detA)(detB). (4)

Furthermore, we can use

det


a b c d
e f g h
i j k l
m n o p

 = a det

f g h
j k l
n o p

− b det

 e g h
i k l
m o p



+ c det

 e f h
i j l
m n p

− d det

 e f g
i j k
m n o

 . (5)

This yields

det r[e] = det r[(123)] = det r[(12)(34)] = 1

and

det r[(12)] = det r[(1234)] = −1, (6)

which corresponds to the sign representation: (−1)m, where m is the number of
2-cycles needed to represent the permutation. The number m is unique modulo
2 and therefore the sign is unique. Hence, the product of two odd and two even
permutations is even, and the product of an even and an odd permutation is odd.
This is reflected by the sign representation since detAB = detA detB.

3. The matrices (3) permute the entries of any vector v ∈ C4. This means that
vectors with identical entries everywhere will be invariant and SpanC{(1, 1, 1, 1)}
is an invariant 1D subspace. On this subspace the action of the permutation is
described by the trivial representation. The remaining 3D subspace is given by
the vectors v = (v1, v2, v3, v4) with v1 +v2 +v3 +v4 = 0. Let us now determine the
characters of the representation, i.e., the traces of the matrices (3). We obtain

e (12) (12)(34) (123) (1234)
χ4D 4 2 0 1 0

. (7)
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Let us now determine the “modulus” of this character. We obtain

〈χ4D|χ4D〉 =
1

|G|
∑
g∈G

|χ(g)|2 =
1

24

(
1 · 42 + 6 · 22 + 8 · 12

)
=

48

24
= 2. (8)

We know that the modulus in general yields 〈χ4D|χ4D〉 =
∑

im
2
i , where mi is

the number of times the irreducible representation i appears. The only possibility
to obtain 2 is to have two distinct irreducible representations appear once. We
have already identified the trivial representation, but we can also verify explicitly
that 〈χ4D|χtrv〉 = 1

|G|
∑

g∈G χ(g)2χtrv(g)∗ = 1
24

(4 + 6 · 2 + 8 · 1) = 1. Our repre-
sentation must be of the form r = rtrv ⊕ rstd where rstd is some irreducible 3D
representation. For the character this implies that

χ = χtrv + χstd, (9)

and we obtain by subtracting the trivial character on both sides that

e (12) (12)(34) (123) (1234)
χstd 3 1 -1 0 -1

. (10)

must be the character for an irreducible 3D representation. This is called the
standard representation and we add it to the table. It can be interpreted as the
permutation of the vertices of a tetrahedron in R3.

4. Under tensor multiplication we obtain new characters as the products of old char-
acters. The only non-trivial example that we can construct so far is

e (12) (12)(34) (123) (1234)
χstd ⊗ χsgn 3 -1 -1 0 1

. (11)

We may verify by calculating its modulus 1
24

(3 + 6 + 3 + 6) = 1 that it is indeed
another irreducible representation.

5. Finally, we need to find another 2D representation. From orthogonality with all
four representations, we obtain the conditions

2 + 6χ2[(12)] + 3χ2[(12)(34)] + 8χ2[(123)] + 6χ2[(1234)] = 0 (12)

2− 6χ2[(12)] + 3χ2[(12)(34)] + 8χ2[(123)]− 6χ2[(1234)] = 0 (13)

6 + 6χ2[(12)]− 3χ2[(12)(34)]− 6χ2[(1234)] = 0 (14)

6− 6χ2[(12)]− 3χ2[(12)(34)] + 6χ2[(1234)] = 0. (15)

Adding and subtracting (12) and (13) yields

4 + 6χ2[(12)(34)] + 16χ2[(123)] = 0 (16)

χ2[(12)] = −χ2[(1234)], (17)

respectively. Adding (14) to (15) we obtain

12− 6χ2[(12)(34)] = 0. (18)

We thus find from Eqs. (18) and (16) that

χ2[(12)(34)] = 2 (19)

χ2[(123)] = −1. (20)
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Inserting this into Eq. (14), we obtain χ2[(1234)] = 1− χ2[(1234)]− 1
2
χ2[(12)(34)]

and therefore

2χ2[(1234)] = 1− 1

2
χ2[(12)(34)] = 0. (21)

This completes the character of the two-dimensional representation. Note: This
representation is related to the fact that we have a normal subgroup H composed
by the class (12)(34) together with the identity (4 elements). This gives rise to
a quotient group G/H of order 6, which can be shown to be non-Abelian, and
therefore it must be isomorphic to D3. The irreducible 2D representation we just
found is the 2D irreducible representation of D3. It describes the transformations
of the three segments that we can build by connecting two midpoints of surfaces
inside the tetrahedron. As the (12)(34) class is in the same coset as the identity it
also has character 2. Three-cycles are rotations about 120◦, which have trace −1.
The two-cycles describe a reflection that in 2D have eigenvalues ±1 and therefore
character zero. The same holds for four-cycles since they are in the same coset as
two-cycles.
The full character table reads:

C e (12) (12)(34) (123) (1234)
λ 1+1+1+1 2+1+1 2+2 3+1 4
|C| 1 6 3 8 6
χtrv 1 1 1 1 1
χsgn 1 -1 1 1 -1
χ2 2 0 2 -1 0
χstd 3 1 -1 0 -1
χstd ⊗ χsgn 3 -1 -1 0 1

(22)

6. We can decompose rstd ⊗ rstd into irreducibles using the character table. The
character reads

e (12) (12)(34) (123) (1234)
χstd ⊗ χstd 9 1 1 0 1

. (23)

We determine the overlap with the different irreducible representations:

〈χstd ⊗ χstd|χtrv〉 =
1

24
(9 + 6 + 3 + 6) = 1 (24)

〈χstd ⊗ χstd|χsgn〉 =
1

24
(9− 6 + 3− 6) = 0 (25)

〈χstd ⊗ χstd|χ2〉 =
1

24
(2 · 9 + 3 · 2) = 1 (26)

〈χstd ⊗ χstd|χstd〉 =
1

24
(27 + 6− 3− 6) = 1 (27)

〈χstd ⊗ χstd|χstd ⊗ χsgn〉 =
1

24
(27− 6− 3 + 6) = 1. (28)

Hence, we have found that the 9-dimensional representation of rstd ⊗ rstd can be
decomposed into a direct sum of four irreducibles with dimensions 1 + 2 + 3 + 3,
as

rstd ⊗ rstd = rtrv ⊕ r2 ⊕ rstd ⊕ (rstd ⊗ rsgn). (29)
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