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Problem 1 Symmetric group

1. Let G be a group and SN the symmetric group, i.e., the group of permutations
of X = {1, . . . , N}. Show that any group homomorphism ϕ : G → SN induces a
group action on X by the action g · x = ϕ(g)(x). Here the action of an element
σ ∈ SN on x ∈ X is denoted by σ(x).

2. Consider σ ∈ S4 and the action of G = Z defined by the homomorphism

ϕσ : Z→ S4

j 7→ σj, (1)

where we interpret negative powers as powers of the inverse permutation. Find
the orbits of this group action for the permutations σ of the following form.

j 1 2 3 4
σ1(j) 3 1 2 4

j 1 2 3 4
σ2(j) 3 4 1 2

j 1 2 3 4
σ3(j) 4 2 1 3

. (2)

3. One can denote the elements of SN more efficiently by cycles. A cycle is defined
by a Z-orbit of a permutation with the elements written out in the order in which
they occur. For example, the cycles (142)(35)(6) corresponds to the following
permutation in S6: 1 → 4, 4 → 2, 2 → 1, 3 → 5, 5 → 3, 6 → 6. Any permutation
is uniquely characterized by its cycles. Cycles of length one (like (6) before) are
sometimes omitted. Write out σ1, σ2, σ3 and their inverses in terms of their cycles.

4. Which of the permutations σ1, σ2, σ3 are in the same conjugacy class? Find
τ ∈ S4 that relates two of the above elements by σ′ = τστ−1 if they are in the
same conjugacy class.

5. Show that for σ, τ ∈ SN with σ = (j1, . . . , jk) a k-cycle, τστ−1 = (τ(j1), . . . , τ(jk)).

6. The cycle type of a permutation is given by the lengths of all of the disjoint cycles
that appear in its decomposition. Prove that the conjugation classes of SN are
defined by the cycle type.

7. The cycle type can be visualized by so called Young diagram: Draw each k-cycle
as a row of k squares, all cycles stacked on top of each other with larger cycles on
the top, aligned on the left. For S4, identify the diagrams describing σ1, σ2, and
σ3 and find the diagrams for the remaining conjugacy classes in S4. How many
elements does each conjugacy class have?

8. Do the same for S5 and S6 and find the general rule.

9. Find the minimal set of generators of SN . The generators of a group are those
elements that by repeated multiplication produce all other elements of the group.
For example, the generators of the symmetry group of the regular triangle D3 are
rotations r by 2π/3 and reflections s about any symmetry axis. One usually writes
D3 = 〈r, s〉.

10. Consider a cube centered at the origin. Assign four different labels to the eight
vertices, putting the same label onto pairs of vertices at p and −p. Study the
action on these labels for a rotation around a midpoint of a surface, a vortex, and
a midpoint of an edge. Show that S4 ' O.
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Solution to Problem 1 :

1. We check the axioms of a group action. First, since ϕ is a group homomorphism,
we have ϕ(e) = e is the identity permutation. Therefore e · (x) = ϕ(e)(x) = x.
Moreover, g2 · g1 · x = g2 · ϕ(g1)(x) = ϕ(g2)ϕ(g1)(x) = ϕ(g2g1)(x) = (g2g1) · (x), so
both axioms are satisfied. Note: Every group action can be uniquely represented
in this way since g · x is an automorphism of X and can be identified with a
permutation for every g.

2. We can obtain the orbits by writing up the elements in a circle and tracing their
evolution under the group action:

 

Note: From the orbit decomposition, we have that the Z-orbits of σ define a
partition of X.

3. We have σ1 = (132), σ2 = (13)(24), and σ3 = (143). The inverses are given by
reversing the order in each cycle, i.e., σ−11 = (123), σ−12 = (13)(24) = σ2, and
σ−13 = (134).

4. We represent the permutations by arrows between the elements (see below). We
note that conjugation, i.e., τστ−1 can permute the elements of the domain and
the codomain, but it cannot change the arrows in between them. We can write
this down for a general permutation τ and see that for two permutations to be in
the same conjugacy class, they need to have cycles of same length (this is not a
formal proof of course). The permutation τ that relates σ1 and σ3 by conjugation
can be explicitly constructed.
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5. We first consider what happens to an element j ∈ X that is not part of the
k-cycle. It must therefore be in a one-cycle of σ and we have σ(j) = j and
τστ−1[τ(j)] = τ(j), so τ(j) is also in a one-cycle of τστ−1. We now focus on the
elements jl within the k-cycle. They satisfy σ(jl) = jl+1 mod k and τστ−1[τ(jl)] =
τ [σ(jl)] = τ(jl+1 mod k). This yields the result.

6. We have to prove that any two permutations are in the same conjugacy class if and
only if they have the same cycle type. Since any permutation is decomposed into
disjoint cycles (partition of X) it can be considered as the product of its cycles.
Conjugation can then be performed cycle-wise, by inserting the identity ττ−1 in
between two cycles. Each cycle will now transform according to the rule derived
in the previous exercise, i.e., their cycle length will be conserved. This shows that
conjugation cannot change the cycle type.
Conversely, if two permutations σ, σ′ have the same cycle type, we can write them
as products of disjoint cycles σ = s1 . . . sm and σ′ = s′1 . . . s

′
m, where sk and s′k are

cycles of the same length for all k. We can now define a permutation that maps
all the elements of sk onto these of s′k, for all k. This is indeed a permutation of
the full set since all cycles are disjoint. This yields τστ−1 = σ′ and proves the
statement.

7. See notes below:

3



Symmetries in Physics
M1 ICFP TD 4

 

8. A minimal set of generators of SN is for example {(12), (12...N)} (we could take
any other transposition (ab) instead of (12) as long as b − a and N don’t have
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any other common deviser other than 1). To see this, first notice that one can
generate all transpositions between neighbours S = {(12), (23), (34), ...} by re-
peated conjugation. E.g (23) = (12...N)(12)(12...N)N−1. Starting from S, one
can get any transposition, e.g. (15) = (12)(23)(34)(45)(34)(23)(12). Finally one
recovers an arbitrary cycle (j1, ..., jk) from the corresponding transpositions as
(j1, ..., jk) = (j1j2)(j2j3)...(jk−1jk).

9. We see that each face has indeed four distinct labels and this will always be true
after arbitrary rotations of the cube, so the map

φ : O → S4

R 7→ φ(R) = σR, (3)

where σR is a permutation of the four distinct labels of a single, fixed face of the
cube, is well defined. We notice that 180◦ rotations around a midpoint of an edge
give rise to 2-cycles (exchanging the two adjacent vertices). We can exchange
opposite vertices with such a rotation by choosing the rotation axis parallel to
the face. 90◦ rotations around a midpoint of a face gives rise to 4-cycles. 180◦

gives rise to two 2-cycles, exchanging opposite vertices. Finally rotations around
a vortex give rise to the 3-cycles, keeping the vortex fixed.
To prove that this is an isomorphism, we show that ϕ is bijective. To show
injectivity, we assume that σR = σR′ , so both rotations yield the same face. This
implies that the entire cube looks the same since no rotation can change the fact
that opposite vertices have the same label. This implies that R = R′ which shows
injectivity. Since |O| = |S4| = 24 this implies bijectivity.
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