
Symmetries in Physics
M1 ICFP TD 3

Problem 1 Burnside’s theorem

1. Given an action of a finite group G on a set E , show that the number of orbits r of G
in E corresponds to the average size of the fixed point sets FP = {x ∈ E|g ·x = x}:

r =
1

|G|
∑
g∈G

|FP(g)|. (1)

2. How many different (fictitious) tri-atomic molecules with regular triangular shape
can you construct by choosing each atom from a set of k different atomic species?

Solution to Problem 1 :

1. There are at least two ways to proceed. We describe here these two methods.

First method Count the number of elements in

A = {(g, x) ∈ G× E | g.x = x} .

We have |A| =
∑

g∈G |FP(g)| and on the other hand,

|A| =
∑
x∈E

|StabG(x)|

= |G|
∑
x∈E

1

|OrbG(x)|

= |G|
r∑

i=1

∑
yi∈OrbG(xi)

1

|OrbG(yi)|

= |G|r .

(we used that yi ∈ OrbG(xi) implies OrbG(xi) = OrbG(yi)). Equating both results
yields Eq. (1).

Second method We start from the formula given in the lecture:

1

|G|
∑

g∈G\{e}

|FP(g)| =
r∑

i=1

(
1− 1

|StabG(xi)|

)
. (2)

We obtain

r =
1

|G|
∑

g∈G\{e}

|FP(g)|+
r∑

i=1

1

|StabG(xi)|
. (3)

Using |G|/|StabG(xi)| = |OrbG(xi)|, we can write

r∑
i=1

1

|StabG(xi)|
=

1

|G|

r∑
i=1

|OrbG(xi)| =
|E|
|G|

=
|FP(e)|
|G|

. (4)

Inserting this back into Eq. (3) yields Eq. (1).
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2. Any two configurations (i1, i2, i3) describe the same molecule if they are related
by a group operation from D3 (it is the same molecule looked at from a different
angle). We must avoid counting these configurations more than once. We define
a group action from the group D3 onto the set E = {(i1, i2, i3) | 1 ≤ i1, i2, i3 ≤ k}.
The total number of actually distinct molecules is given by the number of orbits
of this group action. We use Burnside’s theorem to count the orbits via the
cardinality of the fixed point sets. The group consists of {e, r, r2, f1, f2, f3} and we
have |FP(e)| = |E| = k3. Since the rotations r and r2 move all the corners of the
triangle, their fixed points are triangles of equal atoms in all corners. This yields
|FP(r)| = k. Finally, the three mirror operations fj leave a single atom invariant
(which thus can be of any species to be in the fixed point set) while exchanging the
two other atoms (which thus must be of the same species). The total number of
fixed points is |FP(fj)| = k2. Summing over all elements, we obtain from Eq. (1)

r =
1

6
(k3 + 2 · k + 3 · k2). (5)

Problem 2 Platonic solids

1. Let G ≤ SO3(R) be the rotational symmetry group of some Platonic solid. Show
that the number of faces times the number of edges per face is equal to the group
order

|G| = (#faces)(#edges per face). (6)

Vocabulary: faces (areas, 2 dim.), edges (lines, 1 dim.), vertices (points, 0 dim.)

Hint: Use the group action of G on the set of faces together with the fact that all
faces of a Platonic solid are equal polygons.

2. Express |G| in terms of the number of vertices or the number of edges.

Solution to Problem 2 :

1. Let F be the set of faces of the Platonic solid. Since all faces are equal, we can
reach any face from any other face by means of a rotation g ∈ G. This means that
the set F contains only a single G-orbit, i.e., F = OrbG(x) for any x ∈ F . We have
learned in the lecture (Theorem 2.8) that in this case there exists an isomorphism

G/StabG(x) ' F, (7)

and in particular |G| = |F ||StabG(x)|, where |F | = #faces. To determine |StabG(x)|,
recall that each face is a regular n-gon, where n = (#edges/face). The symme-
tries of an n-gon are described by the dihedral group Dn (of order 2n), but only
the n rotations are contained in G. Therefore |StabG(x)| = n, which proves the
statement.

2. Since also all vertices are the same, the same argument yields

|G| = (#vertices)(#edges/vertex). (8)

Finally, also all edges look the same. They always have only two stabilizers (rota-
tions of 180◦ and identity), so we also get

|G| = 2(#edges). (9)
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Problem 3 Reconstruction of the octahedron

Show that the finite subgroup G ≤ SO3(R) with 3 orbits when acting on the set of its
fixed points on the unit sphere, defined by the fact that an element xi in orbit i has a
stabilizer with (n1, n2, n3) = (2, 3, 4) elements, where ni := |StabG(xi)|, corresponds to O,
the rotational symmetry group of the octahedron/cube. Follow the steps outlined below:

1. Show that |G| = |O|. You can use the result from the lecture notes:

1

|G|
∑

g∈G\{e}

|FP(g)| =
r∑

i=1

(
1− 1

|StabG(xi)|

)
. (10)

2. Pick any x3 in the third orbit. What is the structure of the stabilizer of x3?

3. As you proceed, depict the elements of OrbG(x3) on the unit sphere. To do that,
decompose them into orbits of H = StabG(x3). Show that they describe the
vertices of an octahedron. Show that G = O.

4. What is the meaning of the other two orbits? How can you reconstruct the cube?

Solution to Problem 3 :

1. The action of a subgroup G ≤ SO3(R) on the sphere has exactly two fixed points
for each element of G except for the identity e. Eq. (10) therefore reduces to

2− 2

|G|
=

3∑
i=1

(
1− 1

ni

)
(11)

which for (n1, n2, n3) = (2, 3, 4) yields |G| = 24. The octahedron has 8 triangular
faces which according to Ex. 2 yields |O| = 8 × 3 = 24. It is dual to the cube
which has 6 squared faces with 6× 4 = 24.

2. The stabilizer of x3 is a group of rotations, all of which leave x3 invariant. This
means that all these rotations are about the axis (x3,−x3). We have StabG(x3) ≤
G. Since these are all rotations about the same axis, we must have a cyclic
subgroup StabG(x3) = {e, h, h2, h3}, with h a 90◦ rotation.

3. First we notice that this decomposition is possible: Since OrbG(x3) is closed under
the action of G, it must also be closed under the action of any H ≤ G.
There are in total |OrbG(x3)| = |G|/n3 = 6 elements in this orbit. Clearly x3 is
its own H-orbit. If −x3 is in OrbG(x3) it would also be its own H orbit. For any
other point g ·x3 ∈ OrbG(x3) that is not fixed by H (in particular g 6= e), we have
an H-orbit with 4 elements OrbH(g · x3) = {g · x3, hg · x3, h

2g · x3, h
3g · x3}. To

find all 6 elements, there must be another orbit, different from x3 with only one
single element, thus −x3 ∈ OrbG(x3). This means that we have three H-orbits in
OrbG(x3): {x3}, {−x3}, and {g · x3, hg · x3, h

2g · x3, h
3g · x3} for some g ∈ G\H.

It remains to be shown that the orbit of g · x3 must be on the equator (half-way
between x3 and −x3).
To achieve this final element of the proof, we repeat the same line of arguments
for the element g · x3 and decompose the orbit into orbits of its stabilizer group.
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It follows that −g · x3 ∈ OrbG(x3), and hence it must correspond to one of the
six points that we identified before. Since −g · x3 is different from x3 and −x3, it
must be part of the orbit with four elements. This is only possible if this orbit lies
on the equator and −g · x3 = h2g · x3.
Since G maps the vertices of the octahedron onto themselves, it follows that G ≤ O.
Since |G| = |O|, we have shown that G = O.

Remark : One can be puzzled by the fact that the proof above is not purely group
theoretic, but involves notions of geometry. This is absolutely normal, and should
be expected: the property that G has orbits of lengths (6,4,3) by itself does not
chartacterize the octahedron group! It is also crucial to use at some point the
assumption that G is a subgroup of SO(3). Since we don’t use at all the matrix
description of G in this exercise, this assumption should be used geometrically.
In other words, we have to use the fact that each element of G is a rotation
characterized by an axis and an angle of rotation.

4. The other orbits describe rotations the faces and the edges of the octahedron. The
edges have always only two stabilizers since they will map to themselves only under
rotations of 180◦ (and identity). The cube can be reconstructed analogously, but
instead of associating the set of poles to the vertices, we associate them to the
midpoints of faces.
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