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Problem 1 All finite groups of up to 5 elements

Find all finite groups up to order 5 by using results of the last TD or by constructing
all valid Cayley tables of up to 5 elements (each element has to appear exactly once in
each row and once in each column). Show that the groups are Abelian and identify the
different groups by isomorphisms to (products of) the cyclic groups Z/nZ.

Solution to Problem 1 :

We know that all groups of prime order |G| = p are isomorphic to Z/pZ. These are cyclic
and therefore generated by a single element g. This answers the question for n = 1, 2, 3, 5.
E.g. the (only) finite group of 5 elements is G5 = {e, g, g2, g3, g4} with g5 = e.

For n = 4 there are four possible valid Cayley tables (do explicitly case-by-case). Then,
notice that three of them are isomorphic to each other (up to relabeling), while another
is apparently different. First look at Z/4Z and show that each of the three identical ones
can be mapped to it by an isomorphism. Finally consider Z/2Z × Z/2Z with elements
{(0, 0), (1, 0), (0, 1), (1, 1)} and composition rule (a1, b1)+(a2, b2) = (a1+a2 mod 2, b1+b2
mod 2) and show that it is isomorphic to the fourth possible group of order 4. It is easy
to see that no isomorphism between Z/4Z and Z/2Z×Z/2Z can be constructed: Group
homomorphisms must conserve the property that an element is self-inverse. Since Z/4Z
has only a single self-inverse element that is not identity (namely 2) but in Z/2Z×Z/2Z
all elements are self-inverse, the groups are not isomorphic.

Finally note that these groups are Abelian they since they are cyclic or since their Cayley
tables are symmetric under reflection on the main diagonal.

Problem 2 Union of groups

Let G1 and G2 be two subgroups of G. In the lecture you saw that the intersection of two
subgroups always defines a group. When does the union G1 ∪G2 give rise to a group?

Solution to Problem 2 :

We show that G1 ∪ G2 is a group if and only if either G1 ≤ G2 or G2 ≤ G1 (H ≤ G is
usually used to denote that H is a subgroup of G, while ⊆ mearly means subset) . If
G1 ≤ G2 then G1 ∪G2 = G2 and (G2, ·) is a group. Similarly for G2 ≤ G1.

To show the converse, we assume that G1 ∪ G2 is a group and pick as the first option
g1 ∈ G1 completely free and g2 ∈ G2 such that g2 /∈ G1. If this is not possible we pick
instead as the second option g2 ∈ G2 unconstrained and g1 ∈ G1 such that g1 /∈ G2 (if
this is also not possible then G1 = G2). The group axiom ensures that g1g2 ∈ G1 ∪ G2.
Hence,

g1g2 = g, (1)

where g ∈ G1 or g ∈ G2. Having g ∈ G1 implies g2 = g−11 g ∈ G1 which contradicts the
first option. Therefore we have g ∈ G2 which implies g1 = gg−1 ∈ G2. Since g1 was
unconstrained we showed that G1 ≤ G2. If we had to pick g1 and g2 according to the
second option, then it follows analogously that G2 ≤ G1.

Problem 3 Quotient groups

1. Remember that the set of left costs G/H only forms a group, called quotient group,
if H / G, i.e. if H is a normal subgroup of G. Given a subgroup of this quotient
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group A ≤ G/H, show that we can reduce G to a subgroup G′ ≤ G with H / G′

such that A can be also written as a quotient group A = G′/H.

2. Let ϕ : G→ G′ be a group homomorphism. Show that

Im(ϕ) ' G/Ker(ϕ). (2)

3. Show that

G/Z(G) ' Inn(G), (3)

where Inn(G) is the group of inner automorphisms of G. An inner automorphism
is defined as

ϕg : G→ G (4)

h 7→ ϕg(h) = g · h · g−1. (5)

Solution to Problem 3 :

1. We denote cosets of H in their usual way as [g] = gH = {gh | h ∈ H}. G′ = {g ∈
G | [g] ∈ A} is a subgroup of G since A is a group. Moreover, H = [e] ∈ A and
therefore H ≤ G′. Since H / G it is also a normal subgroup of G′ and we have
H /G′ ≤ G. Let us now construct the quotient group G′/H = {[g′] | g′ ∈ G′}. By
definition of G′, we find G′/H = A.

2. First of all this quotient group exists since Ker(ϕ) / G. This can be checked
quickly: The properties of group homomorphisms ensure that e ∈ Ker(ϕ) and for
g1, g2 ∈ Ker(ϕ), ϕ(g1 · g2) = ϕ(g1) ·ϕ(g2) = e, so g1 · g2 ∈ Ker(ϕ) and Ker(ϕ) ≤ G.
Moreover, for h ∈ Ker(ϕ) and g ∈ G: ϕ(g · h · g−1) = ϕ(g)ϕ(h)ϕ(g)−1 = e and
g · h · g−1 ∈ Ker(ϕ), since ϕ(h) = e, ensuring that Ker(ϕ) / G.

We now define the map

f : G/Ker(ϕ)→ Im(ϕ) (6)

[g] 7→ ϕ(g). (7)

Whenever we define a map on a quotient set we first have to make sure that it is
well defined, i.e., its definition must not depend on the choice of the representative.
Assume that [g1] = [g2], then ∃h ∈ Ker(ϕ) : g1 = g2 · h. This implies ϕ(g1) =
ϕ(g2 · h) = ϕ(g2) · ϕ(h) = ϕ(g2) and the map is well defined. To show that f is
a group homomorphism, consider f([g1] · [g2]) = f([g1 · g2]) = ϕ(g1 · g2) = ϕ(g1) ·
ϕ(g2) = f([g1]) · f([g2]). f is clearly surjective and to show injectivity we assume
f([g1]) = f([g2]), i.e., ϕ(g1) = ϕ(g2). We obtain e = ϕ(g1)

−1 · ϕ(g2) = ϕ(g−11 · g2)
and therefore g−11 · g2 ∈ Ker(ϕ) which is the definition of [g1] = [g2]. In conclusion,
f is a group isomorphism.

3. We define the map

ϕ : G→ Inn(G) (8)

g 7→ ϕg. (9)
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We have Im(ϕ) = Inn(G). Notice that there are less elements in Inn(G) than there
are in G since some elements in G may give rise to the same map. Indeed these
elements are from the center of the group. Let us analyze the kernel of ϕ:

Ker(ϕ) = {g ∈ G | ϕg = id} (10)

= {g ∈ G | ϕg(h) = h} (11)

= {g ∈ G | ghg−1 = h} (12)

= {g ∈ G | gh = hg} (13)

= Z(G). (14)

The result now follows from

G/Ker(ϕ) ' Im(ϕ). (15)

Bonus question: When is Inn(G) trivial? Answer: If and only if G is abelian.

Problem 4 Harder questions about normal subgroups

1. Is the relation / (i.e. the property of being a normal subgroup) transitive? In other
words, is it true that if H, F and G are groups such that H / F / G, then H / G?

2. Let G be a finite group, and H be a subgroup of G of prime index p. Show that if
no prime smaller than p divides |G|, then H is a normal subgroup.

Solution to Problem 4 :

1. Since the order of a subgroup divides the order of the group, we have |H| divides
|F | divides |G|. Furthermore we need |H| ≥ 2 (otherwise it is just the identity
which is always a normal subgroup), so the minimal order of |G| that could serve
as a counterexample is 8.

There is indeed such a group: The dihedral group D4, corresponding to the sym-
metries of the 4-sided regular polygon (i.e. a square in this case). The group is
generated by rotations r of π/2 and reflections s by an arbitrarily chosen symmetry
axis of the square (take s = fk for some arbitrary k to agree with the notation of
the lecture notes), together with the relations r4 = e, s2 = e and rsr = s (you can
verify these by applying them explicitly to a square). Thus the groups consists of
the 8 elements

G = D4 = {e, r, r2, r3, s, rs, r2s, r3s}. (16)

It has the normal subgroup F = {e, r2, s, r2s} (check it!) which itself has a normal
subgroup H = {e, s}. But H is not a normal subgroup of G because for example
for g = r ∈ G (then g−1 = r3) and s ∈ H, we have rsr3 = r2s (by using the relation
rsr = s multiple times) and r2s /∈ H.

2. Let X = {gH|g ∈ G}. By definition of the index, the cardinality of X is the index
of the subgroup H in G, so |X| = p. Consider the map

φ : G → Bij(X)

g 7→
(

X → X
g′H 7→ gg′H

)
.
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This map is a group morphism, as for all g1, g2, g3 ∈ G one has

(φ(g1g2))(g3H) = g1g2g3H = (φ(g1) ◦ φ(g2))(g3H) .

Let K be the kernel of φ. Being the kernel of a group morphism, K is a normal
subgroup of G. We now prove the three following properties:

� K ⊂ H.
Indeed, if k ∈ K then φ(k) = idX , so for all g ∈ G, kgH = gH. In particular
for g = eG this gives kH = H, and therefore k ∈ H.

� The group G/K has index p.
Indeed, the order of the group G/K is |G|/|K|, which is a divisor of |G|.
Therefore, because of the assumption, the prime number decomposition of
|G/K| contains only primes which are ≥ p. On the other hand, by the isomor-
phism theorem, G/K is isomorphic to the image of φ, which is a subgroup of
Bij(X) ∼= Sp. So its order divides the order of Sp which is p!. Therefore the
prime number decomposition of |G/K| contains only primes which are ≤ p,
and p can appear with multiplicity at most one. This proves the claim.

From this we conclude that K = H, and therefore H is normal.
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