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Problem 1 Cayley tables

The composition law of finite groups G = {g1, . . . , gN} can be described by Cayley tables
of the form:

g1 · · · gi · · · gN
g1
...

...
gj · · · gj · gi · · ·
...

...
gN

1. Show that each element of G appears exactly once in each row and each column
in the Cayley table.

2. Prove Cayley’s theorem: Each group of N elements is isomorphic to a subgroup
of the symmetric group SN (i.e., the set of all permutations of N elements).

Solution to Problem 1 :

1. For each gi, the map σl
gi

(g) = gi · g is an automorphism of G (but not a group
homomorphism). To show injectivity, assume that σl

gi
(g) = σl

gi
(g′), i.e., gi · g =

gi · g′. It follows that g = g′. Since both sets have the same cardinality, the map
must be bijective. We can also explicitly verify surjectivity by considering that for
each g′, we can take g = g−1i · g′ ∈ G and obtain σl

gi
(g) = g′. This shows that each

row contains a permutation of the group elements, and the same follows for the
columns using the automorphisms σr

gi
(g) = g · gi.

2. Consider the map g 7→ σl
g. We have seen that σl

g permutes the elements of G
and can therefore be interpreted as a permutation σ ∈ SN of G, which is a set
of |G| = N elements. This map σl : G → SN is not surjective (for N > 2) since
|SN | = N !, but it is injective: σl

g = σl
g′ means that for all g′′ ∈ G : g · g′′ =

g′ · g′′, implying g = g′. Moreover, σ is a group homomorphism: ∀g ∈ G holds:
(σl

g1
· σl

g2
)(g) = g1 · g2 · g = (σl

g1·g2)(g). Hence, σl is a group isomorphism between
G and Im(σl), which is a subgroup of SN according to Corollary 2.5 in the script.

Problem 2 The group D3

The group D3 describes all symmetries (rotations and mirror operations) of an equilateral
triangle.

1. Construct the Cayley table of D3. Is the group Abelian?

2. Find all subgroups of D3. Whenever possible, construct the corresponding quotient
group and its Cayley table. Find the left- and right cosets of some non-normal
subgroup.

Solution to Problem 2 :

1. The elements of D3 are given by identity e, rotation r around 120◦, r2 and the
three reflections {f1, f2, f3} leaving one of the corners unchanged. We use the rules
derived in the previous exercise to construct the Cayley table as far as possible. In
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the upper diagonal block, we recognize the cyclic subgroup of rotations {e, r, r2}.
We only need to explicitly determine two combinations to fully determine the off-
diagonal 3× 3 blocks, e.g., r · f1 = f3 and f1 · r = f2. The remaining block on the
diagonal is determined from, e.g., f2 · f1 = r2. We find

e r r2 f1 f2 f3
e e r r2 f1 f2 f3
r r r2 e f3 f1 f2
r2 r2 e r f2 f3 f1
f1 f1 f2 f3 e r r2

f2 f2 f3 f1 r2 e r
f3 f3 f1 f2 r r2 e

.

The group is not Abelian as is reflected by the Cayley table being not symmetric
with respect to the diagonal. Note that, generally, the identity must be found on
the diagonal or symmetrically around the diagonal since if h is the inverse of g we
have e = g · h = h · g.

2. From the Cayley table we identify three subgroups, C3 = {e, r, r2} and the groups
Hi = {e, fi}. Since rfir

−1 = fj (as can be seen for some example from the
table) the Hi are not normal. Left- and right-cosets can be explicitly constructed,
e.g., H1 = {e, f1}, rH1 = {r, f3}, r2H1 = {r2, f2} whereas H1r = {r, f2} and
H1r

2 = {r2, r3}. These can be interpreted as the H1-orbits of the left/right-
regular group action onto itself, which yields a partition of D3 (but not a quotient
group, i.e., the orbits do not behave like elements of a group, since H1 is not
normal). Since fir

kf−1i = fir
kfi = fjfi = rk

′ ∈ C3, the subgroup C3 is normal.
The quotient group D3/C3 has two elements (see also Lagrange’s theorem below)
with C3 = [e] ∈ D3/C3. It is apparent from the Cayley table that multiplication
of C3 with any fi yields the set [f ] = {f1, f2, f3}. The group is isomorphic to
Z/2Z and its Cayley table can be derived from the one of D3 by identifying the
3 × 3 blocks with the elements of the quotient group. Interesting to note: Up to
isomorphism, the only groups of order 6 are D3 and Z/2Z× Z/3Z ' Z/6Z.

Problem 3 Lagrange’s theorem

Show that for a finite group G with subgroup H ≤ G, the order |H| divides |G|.

Solution to Problem 3 :

Recall that the (left-)cosets of H define a partition of G, leading to |G| =
∑

k |gkH|.
Moreover, each coset is a translated copy of H, and therefore |gkH| = |H|. Let k be the
number of cosets, then we obtain the result |G| = k|H| and hence |H| divides |G|.

Problem 4 Modular arithmetics

1. Construct the quotient groups of (Z,+).

2. Show that for any g ∈ G, where G is a finite group, Pg = {k ∈ Z|gk = e} can be
written as |g|Z. The number |g| is called the order of g.

3. Show that |g| divides |G|.

4. Show that every group G whose order |G| = p is prime is isomorphic to Z/pZ.
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Solution to Problem 4 :

1. All subgroups of Z are of the form nZ (Theorem 2.1 in the script). They are normal
because of the commutativity of the addition. We construct the corresponding
quotient groups Z/nZ by finding the cosets. The subgroup itself acts as the identity
element nZ = [0] ∈ Z/nZ with nZ = {k ∈ Z|k mod n = 0}. To identify the
cosets of nZ, we consider without restriction n > 0. Any m ∈ Z with 0 < m < n
is not an element of nZ and we obtain the coset [m] = nZ + m = {k ∈ Z|k
mod n = m}. We obtain the quotient group Z/nZ = {[0], [1], . . . , [n − 1]}. This
describes modular arithmetics, i.e., addition modulo n.

2. The group homomorphism f : Z→ G defined as f(k) = gk leads to Pg = Ker(f).
From Im(f) ' Z/Ker(f), we conclude that the kernel cannot be trivial since
otherwise Im(f) ' Z/{0} = Z, which is an infinite set, whereas the codomain of f
is the finite set G. Since Ker(f) is a subgroup of Z, we conclude that there exists
a |g| such that Pg = |g|Z. For every g ∈ G in a finite group there exists a k ∈ Z,
such that gk = e: Since there are only a finite set of elements in G, there exist
distinct k1, k2 ∈ Z such that gk1 = gk2 , i.e., gk1−k2 = e.

3. The subgroup 〈g〉 = {gk|k ∈ Z} ≤ G contains exactly |g| elements. Lagrange’s
theorem ensures that |g| divides |G|.

4. From Lagrange’s theorem we know that any subgroup of G has either 1 or p
elements. For g0 6= e, the subgroup 〈g0〉 contains at least the two elements e and
g0 and thus must have p elements. This means that 〈g0〉 = G. Consequently,
for any g ∈ G, there exists a k ∈ Z such that g = gk0 . We use this to define
f : G → Z/pZ as f(g) = [k]. This definition is indeed independent of the specific
k since if gk = gk

′
then gk−k

′
= e and k − k′ ∈ Pg = |g|Z. Hence, there exists

m ∈ Z such that k − k′ = |g|m with |g| = p, i.e., [k] = [k′].

It remains to be shown that f is a group isomorphism. For any g, g′ ∈ G, we
can find k, k′ ∈ Z such that g = gk0 and g′ = gk

′
0 and g · g′ = gk+k′

0 . Hence
f(g · g′) = [k + k′] = [k] + [k′] = f(g) + f(g′). We know that f(G) must be a
subgroup of Z/pZ and therefore have order 1 or p. If the order was 1 that would
imply G = {e} in contradiction to the assumption that |G| = p is a prime. We
thus have f(G) = Z/pZ, i.e., f is surjective. Since the sets G and Z/pZ have the
same cardinality, the map f is a bijection.
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