Problem 1 Cayley tables

The composition law of finite groups $\mathcal{G} = \{g_1, \ldots, g_N\}$ can be described by Cayley tables of the form:

	g_1	• • •	g_{i}		g_N
g_1					
:			:		
g_{j}		• • •	$g_j \cdot g_i$	• • •	
:			:		
g_N					

- 1. Show that each element of \mathcal{G} appears exactly once in each row and each column in the Cayley table.
- 2. Prove Cayley's theorem: Each group of N elements is isomorphic to a subgroup of the symmetric group S_N (i.e., the set of all permutations of N elements).

Problem 2 The group D_3

The group D_3 describes all symmetries (rotations and mirror operations) of an equilateral triangle.

- 1. Construct the Cayley table of D_3 . Is the group Abelian?
- 2. Find all subgroups of D_3 . Whenever possible, construct the corresponding quotient group and its Cayley table. Find the left- and right cosets of some non-normal subgroup.

Problem 3 Lagrange's theorem

Show that for a finite group \mathcal{G} with subgroup $\mathcal{H} \leq \mathcal{G}$, the order $|\mathcal{H}|$ divides $|\mathcal{G}|$.

Problem 4 Modular arithmetics

- 1. Construct the quotient groups of $(\mathbb{Z}, +)$.
- 2. Show that for any $g \in \mathcal{G}$, where \mathcal{G} is a finite group, $P_g = \{k \in \mathbb{Z} | g^k = e\}$ can be written as $|g|\mathbb{Z}$. The number |g| is called the order of g.
- 3. Show that |g| divides $|\mathcal{G}|$.
- 4. Show that every group \mathcal{G} whose order $|\mathcal{G}| = p$ is prime is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.