
TD 6

Stars

6.1 The Schwarzschild solution

We want to describe the spacetime outside a star. For simplicity we will assume that the star is
static and displays spherical symmetry. Outside the star there is no matter and no energy density,
so we are going to solve the Einstein equations in the vacuum.

1. Show that the metric can be written

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 (6.1)

where the functions ν and λ will be determined later. What is dΩ2?

2. Write down the Einstein equations explicitely.

3. Using two of the equations, show that λ′ + ν ′ = 0, and then show that r
2
(1 − e−λ(r)) is a

constant, that we will call m.

4. Deduce the explicit expression of the metric.

5. How is the constant m related to the mass of the star?

6. We consider a geodesic in this spacetime, with tangent vector uµ normalised by uµu
µ = −κ.

What are the possible values of κ?

7. Show that the quantities

E =

(

1−
2m

r

)

ṫ and L = r2 sin2 θφ̇

are conserved along the geodesic. Show that they are associated to two particular Killing
vector fields.

8. Find the effective potential for a massive particle and for a light ray.

6.2 Inside a relativistic star

Now we want to know what happens inside the star. We will assume that the star is a perfect fluid
characterized by an energy density ρ, a pressure p and a 4-velocity uµ, inside a sphere of radius R.
To obtain the energy-momentum tensor T µν we take our reference frame as the frame in which the
fluid is at rest. We keep assuming that the star is static and has spherical symmetry, and write our
ansatz ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2.



1. In this frame, write down the components of T µν in terms of p and ρ.

2. Using the fact that the only 2-covariant tensors are gµν and uµuν , write down T µν in a
covariant way.

3. Write down the Einstein equations.

4. Show that

e−λ(r) = 1−
2M(r)

r

where

M(r) = 4π

r
∫

0

ρ(s)s2ds , (6.2)

and that

ν ′(r) =
2M(r) + 8πp(r)r3

r(r − 2M(r))
. (6.3)

5. Use the conservation of the energy-momentum tensor to obtain the Tolman-Oppenheimer-
Volkov equation

dp(r)

dr
= −

M(r) + 4πp(r)r3

r(r − 2M(r))
(p(r) + ρ(r)) . (6.4)

Equations (6.2), (6.3) and (6.4) are known as the equations of structure for spherical stars.

6. ***What is the equivalent of (6.4) in classical Newtonian physics?

7. Explain why the problem can not completely be solved without another assumption.

8. In this question we assume that the energy density is constant : ρ(r) = ρ0.

(a) Is this assumption realistic? Show that it is inconsistent with special relativity.

(b) Find the function p(r).

(c) Show that this model predicts the existence of a maximal mass. Comments?

(d) Write down the metric inside the star.

(e) Compare the volume inside the star to the value it would take if the spacetime were flat.

(f) ***Find and plot an embedding diagram for a 2-dimensional slice of this spacetime
geometry at constant t and θ = π/2.

9. In this question we assume p(r) = ρ(r).

(a) Why is it necessary to add the assumption that the star is contained inside a spherical
shell (not made of realistic matter) at radius R, of negligible mass? What is the area of
this shell?

(b) Find a simple solution of the equations of structure in which ρ(r) is of the form ρ(r) =
k/rn where k is a constant to be found and n is a positive integer.

(c) What is the mass of the star?

(d) What pressure does the shell have to exert?



6.3 Bounds on the maximal mass of neutron stars

We would like to prove that general relativity provides a bound on the maximal mass of a neutron
star, assuming a detailed knowledge of the equation of state up to the density ρ0 of ordinary nuclei
but making only general assumptions on its properties beyond. These assumptions are :

• ρ > 0

• p > 0

•
dp
dρ

> 0.

We will not derive the best bound, but we will show the existence of this bound, using the equations
of structure, (6.2), (6.3) and (6.4).

1. Give an order of magnitude for ρ0.

2. Explain why the three assumptions above are reasonable.

3. Show that the star can be divided into a core where the density is higher than ρ0 and an
envelope where it is lower. Let r0 be the radius of the core, and M0 = M(r0). We will call
M0 the core mass.

4. Using the fact that the core can’t be inside its own Schwarzschild radius, show that there is
a maximum core mass. Express this maximum as a function of ρ0 only.

5. We define the numerical coefficient α by

α =
(M0)max

M⊙

√

ρ0

2.9× 1014 g/cm3 .

What is the value of α for (M0)max found above?


