TD 5

Einstein equations and the Energy-momentum tensor

5.1 Energy-momentum-stress tensor

This exercise illustrates the concept of energy-momentum-stress tensor, which is in intimate relation with the concept of density of energy and momentum. The goal is to make as clear as possible the notions of *density* and *energy* in a relativistic context. For simplicity we assume that we are in Minkowski space with the usual metric $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$.

- 1. Explain why we don't loose much generality with this last assumption.
- 2. In this question we want to define the density of a scalar, namely the *number density* of particles. We consider a box with \mathcal{N} particles moving along one axis with speed V. The volume of the box in its rest frame is \mathcal{V}_* , the rest number density is denoted n and the number density in the frame where the box is moving is denoted N^0 .
 - (a) Find the relation between n, N^0 and V.
 - (b) Show that N^0 is the time component of a 4-vector N^{μ} , and express N^{μ} in terms of n and the 4-velocity u^{μ} . The spacial part of this 4-vector is denoted \vec{N} .
 - (c) Write down the equation of conservation involving N and \vec{N} , and then rewrite this equation in a covariant way, using the 4-vector N^{μ} .
 - (d) The lesson of this discussion is that densities of scalar quantities are the time components of 4-vectors whose spatial components are the corresponding current density. To see this geometrically, we have to realize that a 3-volume is just a 3-surface in the 4-dimensional spacetime, and hence should be oriented by a unit vector n^μ. Show that the number of particles in the 3-volume n^μ δV is δN = N^μn_μ δV.
 - (e) Interpret densities and currents as fluxes.
 - (f) What is the electric charge inside a given 3-volume δV ?
- 3. Now we move on to the density of a 4-vector, like the energy-momentum 4-vector p^{μ} .
 - (a) Why do the description of the density of energy and momentum need a tensor with 2 indices $T^{\mu\nu}$? Show that the defining equation is

$$\delta p^{\mu} = T^{\mu\nu} n_{\nu} \delta \mathcal{V} \,. \tag{5.1}$$

(b) Using the vector $n_{\mu} = (1, 0, 0, 0)$, explain what are the components T^{tt} and T^{it} (for i = x, y, z).

- (c) Using the vector $n_{\mu} = (0, 1, 0, 0)$, explain what are the components T^{tx} and T^{ix} (for i = x, y, z).
- (d) Suppose that an observer is moving in spacetime with 4-velocity u_{obs}^{μ} . Show that the energy density measured by the observer is¹

$$T_{\mu\nu}u^{\mu}_{obs}u^{\nu}_{obs}$$
 .

5.2 Electromagnetic field

We consider the electromagnetic field, described as usual by

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

Here the coordinate system that is being used is (x^{μ}) and is general; the spacetime is also general, meaning that the curvature may be non-zero.

- 1. Recall what is A_{μ} and what is the physical interpretation of $F_{\mu\nu}$.
- 2. Show that $F_{\mu\nu}$ is a tensor and that it satisfies

$$\nabla_{\lambda}F_{\mu\nu} + \nabla_{\mu}F_{\nu\lambda} + \nabla_{\nu}F_{\lambda\mu} = 0$$

3. *** Show that the energy-momentum tensor of the electromagnetic field is

$$T_{\mu\nu} = \frac{1}{\mu_0} \left(F_{\mu\sigma} F_{\nu}^{\ \sigma} - \frac{1}{4} g_{\mu\nu} F^{\rho\sigma} F_{\rho\sigma} \right) \,.$$

- 4. Write down Maxwell's equations in a covariant way, with sources represented by a current J^{μ} , and compute $\nabla^{\mu}T_{\mu\nu}$. What is the interpretation of this result?
- 5. Show that in a spacetime with only an electromagnetic field and no matter, Einstein equations read $R_{\mu\nu} = 8\pi G T_{\mu\nu}$.

5.3 Are wormholes physical?

We remind the metric of the wormhole that we already studied :

$$ds^{2} = -dt^{2} + dr^{2} + (b^{2} + r^{2})(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

We would like to know whether a certain distribution of matter and energy can cause this geometry through Einstein's equations.

- 1. Compute the Einstein tensor in this geometry.
- 2. Is it possible to construct the wormhole with classical means?

¹You can consider a little volume δV in the observer's rest frame and compute the energy δE measured inside.